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1. Introduction  

The growth of high quality nano-scaled silicon germanium (SiGe/Si) layers and Ge islands on Si 

substrates by ultra high vacuum/chemical vapor deposition (UHV/CVD) has attracted intense 

interest because of the prospect of band gap engineering (1). For large scale infrared (IR) 

detector systems, SiGe/Si is a favorable material system because of perfect thermal matching to 

the Si readout circuit and adaptable peak and cut-off wavelength. Some of the important 

applications of SiGe/Si are satellite imaging and observation, heat sensing, medical diagnostics, 

and missile tracking. The Army would like to use the SiGe/Si material system as a replacement 

for an expensive InGaAs detection and imaging system. To make SiGe/Si comparable in 

efficiency, the reflective property of the material must be reduced and the absorption property 

has to be increased by using one of the available techniques. 

Over the past 10 years, new phenomena based on nanostructuring the surface of Si have been 

investigated for application to infrared imaging. In 2003, Mazur and colleagues reported that 

using femtosecond laser processing coupled with halogenated etching gas could produce silicon 

surfaces having sub-micrometer corrugated conical tip microstructures (1). These 

microstructures had the special property such that the surface of the silicon was rendered almost 

perfectly non-reflective. They named this material “black silicon.” In that early study, they 

showed that when they produced that microstructure using only halogenated etching gas (sulfur 

hexafluoride [SF6]), the spectral absorbance of light was extended well beyond that which would 

be expected from the conventional band-theory understanding of silicon. In subsequent reports 

from researchers in the Mazur group, evidence began to point to the very highly doped surface 

region (sulfur-doped) on the etched surface that seemed to promote sub-bandgap absorption (2). 

In that work, they demonstrated this important result:  after forming the etched surface, the 

extended wavelength infrared absorbance could be decreased and almost completely eliminated 

because of dopant evaporation during high-temperature annealing. Based on these early results, 

the Mazur Group partnered with device researchers at the University of Virginia and the 

University of Texas at Austin to demonstrate a novel infrared detector based on this new material 

(3). 

The researchers in this partnership showed two very important demonstrations: (1) the spectral 

responsivity was enhanced compared to that of conventional silicon photodetectors, and  

(2) responsivity was extended to longer infrared wavelengths (1.3 and 1.55 m), beyond the 

spectral range generally expected from silicon, which is limited to about 1.1 m. While there is 

some uncertainty about the mechanism that enables sub-bandgap, longer wavelength detection, 

the mechanism is currently explained as longer wavelength photons excite carriers across the 

energy difference between mid-gap defect states from the heavily doped region and the 
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conduction band edge. While the science behind the phenomena is being resolved, these 

interesting results presage new, low-cost near-infrared detectors that could have important 

military and civilian applications. However, for tactical military applications, a much higher 

spectral response at extended wavelengths in the near-infrared (~2 m) would be desired. To that 

end, we are investigating Si1–xGex materials with the goal of obtaining an improved photo 

response out to 2 m by (1) shrinking the bandgap so that the difference between the conduction 

band-edge and the defect state is reduced and (2) providing a naturally larger absorption 

coefficient for longer wavelength light. So this work builds upon the results reported from the 

Mazur and partner groups, and investigates new heavily doped black Si1–xGex materials. Some 

important differences between this work and the approach of the Mazur and partner groups are 

(1) we employ a metal-masked, wet-chemical etching approach versus a femtosecond gas-phase 

etching process, and (2) we used in-situ boron doping p≈5x10
19

/cm
3
 versus sulfur doping 

n≈5x10
20

/cm
3
 from the past work.  

Our investigation with black Si1–xGex is very important since SiGe is a good substitute material 

for Si for many applications in low-power and high-speed semiconductor device technologies (4, 

5). It is a promising material for quantum well devices (6), infrared detectors (7), and modulation 

doped field-effect transistors (MODFET) (8, 9). Recently, much work has been planned to use 

Si1-xGex for optodetectors and micro-electro-mechanical systems (MEMS) sensors and actuators. 

Activity is also being continued to develop flip chip optical receives. Among the many other 

applications currently being considered are strained SiGe on silicon to be used as base in a 

heterojunction bipolar transistor (HBT) in a bipolar complementary metal oxide semiconductor 

(BiCMOS) process and complementary metal oxide semiconductor (CMOS) logic applications. 

SiGe has much to offer for the fabrication of devices with improved efficiency (10). In a 

particular instance, self-assembled Ge-islands and black Ge based on nano-needle arrays have 

been developed (11). Increased absorption of light is essential to create highly efficient opto-

sensors and photovoltaic devices. To achieve this, efficient three-dimensional (3-D) structures 

with relevant material systems are required. Apart from these two techniques, others (12, 13) 

have proposed a technique in which multicrystalline SiGe bulk crystal with microscopic 

compositional distribution is grown using the casting technique. The average Ge composition 

was changed systematically between 0% and 10%. A small addition of Ge to multicrystalline Si 

was found to be very effective to increase the short-circuit current density without affecting open 

circuit voltage. They also indicated that such grown SiGe materials are promising candidates for 

solar cell and other opto-electronic applications. For such applications, SiGe has to be prepared 

with reduced reflectivity and increased absorbance. This can be achieved through surface 

texturing, as has been used in the case of black silicon. In general, for a 3-D blackened surface, 

reactive ion etching or wet anisotropic etching are the techniques of choice. Although reactive 

ion etching can provide a structure with a high aspect ratio, it involves rather complicated 

procedures. Metal enhanced chemical etching (MECE) (14, 15), by which silicon is etched using 
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metal thin films or particle as catalysts, is an attractive procedure because it is simple and easier 

to perform with good results.  

SiGe/Si heterostructures are expected to play a major role in Si-based optoelectronics (16, 17). 

Recent advances in SiGe heteroepitaxy techniques for the growth of strained Si1–xGex layers 

have extended their applications in Si-optoelectronics. The importance of Si/SiGe strained layers 

lies in the possibility of integrating optoelctronic devices.  Due to the compressive strain in SiGe 

alloy films, the bandgap of Si1–xGex alloys can be tailored continuously from Si (x=0, 1.17eV) to 

Ge (for x=1, 0.66 eV) at room temperature (18). Si is transparent in the 1.3–1.6 µm wavelength 

range, and the SiGe absorption edge shifts towards the red with increasing Ge fraction. The shift 

offers a means absorbing 1.3–1.6 µm light, if desired by choosing x > 0.3 for 1.3 µm light and x 

> 0.85 µm for 1.55 µm. 

2. Experimental Details  

The Si(x)Ge(1–x) alloy layers in this work were grown on 8-in silicon substrates having either 

(111) or (100) orientation and etched as described in (19). Etched Si1–xGex/Si with varying Ge 

concentration was used for the fabrication of the metal semiconductor metal (MSM) 

photodetector. Standard processing techniques were used.  After defining the pattern on the top 

surface, Schottky metal contacts were made on the surface of the absorption layer.  Here the 

device is in contrast to the normal Schottky photodiode that has top and bottom metal contacts.  

The MSM pattern has two back-to-back diodes in series—one forward-biased and the other 

reverse-biased. In the dark condition, there is only a little reverse saturation current produced in 

the biased photodetector, which is called the dark current of the device.  Figure 1 depicts the 

structure of the MSM. 


(a)                                                                             (b)  

 

 Figure 1.  Basic structure of MSM photo detector (a) Si1–xGex/Si material and (b) MSM device. 

When light is shone onto the surface of the device, it will be absorbed within the underlying 

semiconductor at a depth depending upon the wavelength and the absorption coefficient of the 

L 

w 
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material.  It is worth mentioning here that we have modified the semiconductor surface with the 

intention of increasing the absorption, thus increasing the quantum efficiency and responsivity.  

The absorbed light will produce electron-hole pairs, and with an application of a bias to the metal 

fingers, an electric field will be created within the underlying semiconductor that sweeps the 

photo-generated carrier out of the depletion region resulting in a photocurrent.  The collection 

efficiency of the MSM will depend upon the magnitude of the applied voltage and finger 

separation (d).  The metal fingers are fabricated with Ti/Au (200 nm/2500 nm). Fabricated 

devices were used for I-V measurements using Agilant 4160 Parametric Analyzer to obtain the 

dark current, as well as optical response under varying optical power. A broadband source was 

used for the input light.  

We used the Oriel IQE-200 EQE/IQE measurement for extended wavelength range to measure 

the QE. The IQE 200 incorporates a novel geometry that splits the beam, allowing for 

simultaneous measurement of EQE (external quantum efficiency) and the reflective losses to 

quantify IQE (internal quantum efficiency). The power spectral responsivity Rpa(λ) for collected 

electrons per incident photons may be converted to external quantum efficiency QE (λ), and then 

to IQE (λ), using the equations, 

 

 QE (λ) =  (1) 

 

 IQE (λ)=  , (2) 

 

where   is effective sample reflectance. 

The optical layout of the beam splitter in the IQE 200 system is illustrated in figure 2. It is 

comprised of one spectrally neutral 50-50 beam splitter and four lenses. The output light from 

the monochromator is first collimated by lens 1. The collimated light is then split into two beams 

of which one passes through the beam splitter and is focused by lens 2 onto the Reference 

Detector. This detector measures the output light of any given wavelength. The other beam is 

reflected by the beam splitter down onto the sample surface through focusing lens 3 for the QE 

measurement. The spot size on the sample is determined by the lens 3. Therefore, by varying the 

lens 3 optical parameters, a variety of spot size options can be obtained. For the internal quantum 

efficiency measurement, the reflected light from the sample is collimated lens 3 and then a 

known factor of it passes through the beam splitter. The beam is then focused by lens 4 on to the 

reflectance detector (figure 3). 
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Figure 2.  Block diagram of IQE 200 EQE/IQE measurement system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.  Depiction of the beam splitter and its effect on the optical beam. 
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3. Result and Discussion 

Figures 4a and b give the current-voltage curves of the Si1–xGex/Si MSM detectors, with 15% 

and 30% Ge-containing samples. The optical illumination was provided by 5 and 10 mW white 

light sources.  

 

       
(a)                                                                            (b)  

Figure 4.  I-V curves for Si1–xGex/Si MSM photodiodes. (a) 15% Ge with and without 5 mW light (red) and (b) 30% 

Ge MSM device with 5 (green) and 10 mW lights (Lavender). 

The clear dependence of the response on the optical power of the illumination source is evident 

here.  The dependence is increased with respect to the amount of Ge in the semiconductor 

surface.  

Figure 5 gives the I-V curves of Si1–xGex/Si with 15% but etched for (a) 5 min and  

(b) 10 min, followed by the fabrication of MSM detectors. Comparing the results, one can see 

that there is increased optical response for two similar samples containing the same amount of 

Ge but with the surface etched for varying times. Clearly, one can observe the enhanced optical 

response due to greater absorbance of photons on the second sample.  
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Figure 5.  I-V curves for Si1–xGex/Si MSM photodiodes. (a) 5 min etched 15% Ge with 5 mW light(red) and 

(b) 15% Ge MSM device with 10 min etch 5 mW illumination. 

The effect of optical filtering on the optical response was studied in another set of samples, since 

Si1–xGex/Si is expected to show detection ~1600 nm. However, we wanted to see the effect of 

using a GaAs wafer and a Si wafer as filters. For a particular optical power, current 

measurements were obtained first for a GaAs filter and then Si filter. In another case for a 

particular optical power of optical illumination, the time response was recorded for varying 

voltages. These two cases are shown in figures 6a and b. 

                 
(a)                                                                                 (b) 

Figure 6.  Time based optical response of Si1–xGex/Si MSM detector. (a) response with a GaAs filter, and a Si 

filter. (b) with Si filter and varying applied voltage, 0.5 V, 1.0 V, and 1.5 V. 

Using GaAs filter has shown the effect of filtered optical beam beyond 960 nm, and the 

amplitude of the response current has dropped substantially to about 70% of the unfiltered.  

Next, using the Si filter has drastically cut down the power to 90%, yet still showing response.  

 5 min etched surface  - SiGe/Si      10 min etched SiGe surface  

Si filter 

0.5 V 

1.0 V 

1.5 V 
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Further, it is shown that as the applied voltage increases the collection efficiency, the response 

current also increases, as seen in figure 6b. 

Measurement of the optical reflectance and further calculation of QE, IQE, and responsivity 

were carried out using equations 1 and 2 for a MSM detector made up of a Si0.85 Ge0.15 /Si, which 

was wet-etched for 10 min, as indicated earlier. The reflectance, QE (λ), and spectral 

responsivity of a 15% Ge-containing Si0.85 Ge0.15 /Si, which was wet-etched for 10 min prior to 

the fabrication of the MSM detector, are plotted with respect to the wavelength and shown in 

figure 7. The measurements were taken without any applied voltage at zero bias.  

                
(a) (b) (c) 

Figure 7.  (a) Reflectance of the sample Si0.85 Ge0.15 /Si etched for 10 min, (b) QE ( λ), and (c) spectral responsivity 

of the same sample with zero bias. 

These results obtained in our experiments are similar to or even better than some of the other 

work for a zero bias applied voltage (20).  

4.  Conclusion 

We fabricated MSM detectors using wet-etched SiGe/Si samples with varying amounts of Ge, 

and studied their electrical properties of I-V, optical response, QE, and responsivity under zero 

bias and the results reported. We observed increased response current as the amount of Ge 

increased in the sample. Similarly, we observed enhanced response current as we changed the 

etching time of the sample indicative of increased absorption. The significance of this work is 

that for the first time, infrared detection beyond the band edges of both silicon and gallium 

arsenide is shown to be feasible with black-SiGe.  Although the response is low, this is due, for 

the most part, to the small initial thickness of the SiGe layer.  Because the absorption coefficients 

of Si, Ge, and SiGe are much smaller than that of, say, InGaAs, much larger thicknesses are 

required to obtain the same absorbance.  The SiGe layers of this work are less than one micron; 

so clearly, for future work, thicker layers will provide dramatically better response than that 

shown here.  However, the key point from this work is that there is a clear path toward very-low 

cost infrared sensing technology that employs blackened SiGe. 
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  ATTN  RDRL SEE M  G  GARRETT 

  ATTN  RDRL SEE M  M  REED 

  ATTN  RDRL SEE M   

  M  TAYSING-LARA 

  ATTN  RDRL SEE M   

  M  WRABACK 

  ATTN  RDRL SEE M  N  BAMBHA 

  ATTN  RDRL SEE M  N  DAS 

  ATTN  RDRL SEE M  P  SHEN 

  ATTN  RDRL SEE O  N  FELL 

  ATTN  RDRL SEE O   

  P  PELLEGRINO 

  ATTN  RDRL SEE  P  GILLESPIE 

  ATTN  RDRL SEG  N  MARK 

  ATTN  RDRL SER E  A  DARWISH 

  ATTN  RDRL SER E  P  SHAH 

  ATTN  RDRL SER L   

  A  WICKENDEN 

  ATTN  RDRL SER L  B  NICHOLS 

  ATTN  RDRL SER L  E  ZAKAR 

  ATTN  RDRL SER L  M  DUBEY 

  ATTN  RDRL SER L  M  ERVIN 

  ATTN  RDRL SER L   

  S  KILPATRICK 

  ATTN  RDRL SER   

  P  AMIRTHARAJ 

  ADELPHI MD 20783-1197 

 


